第11章 バンド合成 - MODIS - ArcMAP

(1) MODISの観測波長と空間解像度

東京情報大学では、テラ衛星(Terra)とアクア衛星(Aqua)に搭載された MODIS(中解像 度画像放射計:モディス)の観測データを直接受信し、各種の地球物理量を抽出し、研究に 利用するとともに、成果物を提供してきた。表 4-3 は、MODISの観測波長と主な利用目的を 示す。TM、ETM+と比較すると、陸域の観測波長帯域に加え、海洋の観測波長帯域が増え、合 計で 36 バンドとなった。その一方で、空間解像度が 1km、観測幅が 2000km と、空間を捉え る仕様が大きく異なる。

MODIS は,表 4-3 に示すように,多波長の多目的のセンサーであるとともに,バンド1と2は250m,3から7は500m,8から36は1000mの空間分解能と,空間分解能からも多目的センサーであることがわかる。TM,ETM+の空間分解能の30m,15mと比較すると,明らかに目的の異なるセンサーであることがわかる。東京情報大学において受信する MODIS により提供されるラスター画像は,日本全域から東アジア域をカバーする。

図1は、2006年5月3日に、東京情報大学において受信した AQUA(アクア)搭載の MODIS データから作成した海表面温度分布図である。ローカルタイムで日中の時間帯に、AQUA は 南南東から飛来し、日本上空を飛行し、北北西方向へ飛行する(図の軌道線)。この図は、日 本の東側を飛行する軌道から観測された海表面温度の領域と、九州上を飛行する軌道から 観測された領域とを合成した図である。飛行しながら約 2000km の領域を走査し、リアルタ イムで観測データを地上へ放送する。地上の受信局では、衛星を追尾し、衛星から放送され るデータを受信し、処理する。ひとつの地上局では、15 分間ほど衛星を追尾し、衛星デー タを受信する。この 15 分間で約 1.5 ギガバイトのデータを受信する。

図1 AQUA 搭載 MODIS から 求められた海表面温度(2006 年5月3日)

バンド	バンド波長	空間分解能	バンド	バンド波長	空間分解能
陸域,雲,エーロゾルなど高分解能観測		地表,雲の温度			
1	620- 670 nm	250 m	20	3.660-3.840 μm	1000 m
2	841- 876 nm	250 m	21	3.929-3.989 μm	1000 m
陸域,雲	,エーロゾル特性		22	3.929-3.989 μm	1000 m
3	459- 479 nm	500 m	23	4. 020-4. 080 μm	1000 m
4	545- 565 nm	500 m	大気温度		
5	1230-1250 nm	500 m	24	4. 433-4. 498 μm	1000 m
6	1628-1652 nm	500 m	25	4. 482-4. 549 μm	1000 m
7	2105-2155 nm	500 m	卷雲,水	蒸気	
海色, 村	<u>直物プランクトン, 生化</u> :	学	26	1.360-1.390 μm	1000 m
8	405- 420 nm	1000 m	27	6.535-6.895 μm	1000 m
9	438- 448 nm	1000 m	28	7.175-7.475 μm	1000 m
10	483- 493 nm	1000 m	雲特性		
11	526- 536 nm	1000 m	29	8.400-8.700 μm	1000 m
12	546- 556 nm	1000 m	オゾン		
13	662- 672 nm	1000 m	30	9.580-9.880 μm	1000 m
14	673-683 nm	1000 m	地表,雲	温度	
15	743- 753 nm	1000 m	31	10.780-11.280 μm	1000 m
16	862- 877 nm	1000 m	32	11.770-12.270 μm	1000 m
大気水蒸気			雲頂高度		
17	890-920 nm	1000 m	33	13.185-13.485 μm	1000 m
18	931- 941 nm	1000 m	34	13.485-13.785 μm	1000 m
19	915-965 nm	1000 m	35	13.785-14.085 μm	1000 m
			36	14.085-14.385 μm	1000 m

表 4-4 テラとアクアに搭載される MODIS の観測波長と主な利用目的

図2 MODIS-NPP 対応受信アンテナ

東京情報大学において導入した MODIS 受信設備(図2)は,衛星を追跡 し,衛星から送信される信号を,2.4m 直径のアンテナにより受信する。アン テナのフィードにより増幅された信号 は,レシーバから汎用高速インターフ エイスを介して受信処理コンピュータ へ入力される。受信処理コンピュータ は,従来ハードウエアにより実現して いたビット・シンクロナイザ,フレー ム・シンクロナイザ機能を,ソフトウ

エアにより実現した。これまで、衛星独自のビットとフレーム構成に合わせてハー ドウエアを衛星の個数分ほど用意していたが、ソフトウエアの調整により、MODIS に加え次節の VIIRS の信号をも受信処理可能である。コンピュータの処理速度が向 上し,従来の専用ハードウエアにより処理していた作業をソフトウエアにより実現 可能な時代となった。

- (2) 目標
 - ① リモートセンシング・データの表示方法を知る。
 - バンドの概念を知る。
 - ③ バンドの組み合わせと利用目的を知る。
- (3) 準備

衛星データ MODIScrefl16144.zip を D:ドライブの¥TEMP フォルダへ、コピー し、解凍する。これは、MODIS のバンド1から7までの大気補正済のデータであ る。

- (4) 作業
 - ① 解凍作業

さらに、D:ドライブ¥TEMP フォルダの¥MODIScrefl16144 フォルダの各フ ァイルを解凍する。

🔯 KantoY.16144042554B1.tif.gz		KantoY.16144042554B1.tif
📔 KantoY.16144042554B2.tif.gz		🔳 KantoY.16144042554B2.tif
📔 KantoY.16144042554B3.tif.gz	ファイルをタフルク	🛋 KantoY.16144042554B3.tif
📔 KantoY.16144042554B4.tif.gz	リックすると、解凍さ	🛋 KantoY.16144042554B4.tif
📔 KantoY.16144042554B5.tif.gz	れる。	🛋 KantoY.16144042554B5.tif
📔 KantoY.16144042554B6.tif.gz		🛋 KantoY.16144042554B6.tif
📔 KantoY.16144042554B7.tif.gz		📧 KantoY.16144042554B7.tif

- ② ArcMAP によるバンドごとの画像表示とマップのエクスポート
 - (ア) ArcMAPを立ち上げ、データの追加から7件のファイルをすべて選択し、 追加する。
 - (イ) レイアウトモードとする。その上で、方位記号、縮尺記号、タイトルを挿 入する。
 - 方位記号は任意の方位記号とする。
 - 縮尺記号は、

Stepped Scale Line プロパティ 🛛 🔀	此ノマ本正はの地内を「垣
目盛と単位 数字とマーク 形式 フレーム サイズと位置	サイス変更時の指定を、「幅
縮尺 目盛幅(D): 50 km 目盛数(V): 4 € 補助目盛数(S): 4 € □ 0 の前に目盛を 1 つ表示(B) サイズ変更時(W)	を固定して調整」とし、 目盛幅を「50km」とする。
幅を固定して調整	
単位	
目盛単位(D):	
キロメートル 〜	
ラベル位置(P):	
バーの右 ~	
ラベル(L): キロメートル シンボル(S)…	
ギャップ(G): 3 pt 🔹	
OK キャンセル 適用(A)	

● タイトルは、バンドごとに B1 から B7 まで識別可能とする。

(ウ) マップのエクスポート

表示の都度、「ファイル」から「マップのエクスポート」を選択し、

B1からB7までのファイルを確認する。

③ バンド組み合わせ(その1)

個々の入力ラスターを選択し、↑あるいは↓の矢印をクリックし、バンド の順番を次のように変更する。

再現色(表示されない)	入力バンド		
R (赤)	KantoY.16144042554B2.tif B1 =R(赤)		
G (緑)	KantoY.16144042554B4.tif B4=G(緑)		
B (青)	KantoY.16144042554B3.tif B3=B(青)		

- ラスター関数プロパティ	×
ー般 コンポジット バンド 出力情報 キー メタデータ	
入力ラスター(I):	+
Kanto Y.16144042554B1.tif	×
KantoY.16144042554B3.tif	1
KantoY.16144042554B2.tif	Ţ

7

タイトルをダブルクリックし、 「2016.5.23 MODIS B143」とする。

(オ)マップのエクスポート

「ファイル」から「マップのエクスポート」を選択し、D:ドライブの ¥TEMP フォルダーへ「MODIS-B143.jpg」として保存する。 ④ バンド組み合わせ(その2)
 (ア)コンポジット関数の編集

個々の入力ラスターを選択し、↑あるいは↓の矢印をクリックし、バンド の順番を次のように変更する。

再現色(表示されない)	入力バンド		
R (赤)	KantoY.16144042554B2.tif	B2 =NIR(近赤外)	
G (緑)	KantoY.16144042554B4.tif	B4=G(緑)	
B (青)	KantoY.16144042554B3.tif	B3=B(青)	

ラスター関数プロパティ		\times
一般 コンポジット バンド	出力情報 キーメタデータ	
入力ラスター(1):		
	+	
KantoY.161440425548	82.tif	
KantoY.161440425548	34.tif	
KantoY.16144042554E	38.tif 🔶 🔶	
KantoY.161440425548	31 tif	
	↓	

(イ)タイトル修正

タイトルをダブルクリックし、 「2016.5.23 MODIS B243」とする。

(ウ)マップのエクスポート

「ファイル」から「マップのエクスポート」を選択し、D:ドライブの ¥TEMP フォルダーへ「MODIS-B243.jpg」として保存する。

- (5) 課題の作成:課題は、エクスポートしたマップを挿入により貼り付ける。
- (6) プロジェクトの保存
 このプロジェクトを、「ファイル」から「名前を付けて保存」を選択し、Z:ドライブの¥空間情報論フォルダに MODIS.mxd として保存する。

