課題4 風力のデータを表示しよう。

- 1. 準備 教材フォルダから以下のフォルダをコピーする。
 - (1) Y:¥env¥asanuma¥wind ・・・・・風力データ

NETCDF フォーマット U コンポーネント:東西方向の風速(m/s) V コンポーネント:南北方向の風速(m/s) W コンポーネント:風速(m/s)

NOAA/NCDC から提供される Blended ocean wind(複合海上風データ)である。

- (2) Y:¥env¥asanuma¥WorldCoast ••••世界地図
- 2. ArcMAP の準備
 - (1) ArcMAPの起動
 - (2) NETCDF ファイル読み込み機能の追加
 - ウインドウズ・タブから ArcToolBox を起動する。
 - ArcToolBox の右ボタンから、
 「ツールボックスの追加」を選択 する。
 - ③ C:ドライブを選択し、
 - $\lceil Program Files X86 \rfloor \rightarrow \lceil ArcGIS \rfloor$ $\lceil Desktop 10.2 \rfloor \rightarrow \lceil ArcToolbox \rfloor \rightarrow$

「Toolboxes」

```
\rightarrow 「Multidimension Tools」 を
```

```
選択する。
```


ツールボックスの	の追加					×
場所: 📄	Toolboxes		• 💪	B-B- B-B- B-B-	*** 88	
名前		タイプ				*
Data Interd	perability Tools	ツールボックス				
🚳 Data Management Tools		ツールボックス				
Seocoding Tools		ツールボックス				
Seostatistical Analyst Tools		ツールボックス				=
🚳 Linear Refe	rencing Tools	ツールボックス				
Same Multidimension Tools		ツールボックス				
🚳 Network Analyst Tools		ツールボックス				
Samples 🚳		ツールボックス				
名前:	Multidimension Too	ls		_	開く	
新和の実子				_	وطور لامار سطو	
り主大会の人間の	ツールホックス			–	- 4972	π.

④ この結果、ArcMAP のツールボックスに、「マルチディメンションツール」が表示され、NetCDF の読み込みが可能となる。

- 3. NetCDFファイルの読み込みとラスター画像の表示
 - (1) Uコンポーネント

「ArcToolbox」から「NetCDF ラスタレイヤの作成」を選択する。

- ① 入力 NetCDF ファイルの指定→wind フォルダの uv20000101.nc
- ② 変数の指定→「u」
- ③ 読み込み後、ラスターレイヤとして表示される。

etCDF ラスタ レイヤの作成 (Make NetCDF Raster Layer)		
入力netCDFファイル	Ĺ	② Help 入力netCDEファイル
C¥apache¥htdocs¥Asanuma2007¥Lectures¥OI2008¥Parts¥wind¥uv20000101nc	2	
変数		The input netCDF file.
u	•	
X ディメンション		
lon	-	
Y ディメンション		
lat	-	:
- 出力ラスタ レイヤ		
u_Layer3	_	
バンド ディメンション (オプション)		
	-	
ディメンション値(オブション)		
	•	
, 「ディポンション」 値	-	
	금 !	
	\mathbf{X}	
	1	
	Ŧ	
		•
OK キャンセル 環境 <<< <>	ルプを非表示	

(2) 座標系の決定

画面を右クリックし、「データフレー ムプロパティ」を選択する。

「座標系」のタブから「投影座標系 (Projected Coordinate System)」→「世界範 囲の座標系(WGS1984)」→「ミラー図法 (Miller Cylindrical)」を選択する。ミラー図 法をダブルクリックし、「中央子午線(Central Meridian」を 180 度とする。

設 名前: 投影 名前: False Easting False Northing Central Meridian	World_Mi	ller_Cylindrical lindrical 0.00000000000000000000000000000000000	ia 1000000 100000	·	
名前: 投影 名前: False_Easting False_Northing Central_Meridian	World_Mi	ller_Cylindrical 'lindrical 0.00000000000000000000000000000000000	Ġ 1000000 100000	•	
投影 名前: False_Easting False_Northing Central_Meridian	, Miller_Cy	lindrical	值 000000 000000		
名前: パラメータ False_Easting False_Northing Central_Meridian	Miller_Cy	lindrical			
パラメータ False_Easting False_Northing Central_Meridian		1 0.00000000000000000000000000000000000	值 000000 000000		
False Easting False Northing Central Meridian			00000		
False Northing Central Meridian		0.0000000000000000	00000		
Central_Meridian		1000			
		1000			
DC+6326/1				+	
距離単位————————————————————————————————————					
名前:	Meter			-	
地理座標系					
Name: GCS_WGS_1984 Angular Unit: Degree (0.	0174532928	519943299)		選択	
Datum: D_WGS_1984 Spheroid: WGS_1984	ich (0.0000	100000000000000000000000000000000000000	*	所規作成…	
+)		変更	

(3) VコンポーネントとWの読み込み表示

Uと同様に変数から「V」と「W」を順次選択し、レイヤーとして表示する。

(4) データの追加から世界地図の海岸線を表示する。

「WorldCoast」フォルダの「country.shp」を選択し、レイヤーとして追加する。

図1 2000年1月1日海上風Uコンポーネント 図2 2000年1月1日海上風Vコンポーネント

日本東方海域に注目すると、U コンポーネントは、_____色であり、_____向きの風が卓越する。V コンポーネントは、______色であり、 向きの風が卓越する。従って、______風が卓越 すると考えられ、______の冬型の気圧配置にあることが伺える。

図3 2000年1月1日の風速分布図

日本の東方海域の風速分布は、_____色であり、_____m/sを越える強い風が吹いていたと考えられる。

学籍番号 環境 花子