2-2 地形図の3次元表示

ArcMAP を利用し、標高データの3次元表示が可能である。ここでは、米国地質調査所 (USGS)が作成した2分刻み(約3km)の標高データ、30秒刻み(約1km)の標高データ、また、国 土地理院の50m 刻みの標高データを利用する。

図 2-15 3 次元表示のためのフローチャート

これらの例は、ラスターデータあるいはポイントデータからサーフェイス(面)を作成すること により、3次元表示が可能となる。

2-2-1 SeaDAS の海底データを利用

- (1) SeaDAS によるデータセットの抽出
 - ① 2-1-3 節に示すように SeaDAS を利用し、任意の海域の海底地形を表示する。
 - ② 課題1の(7)と同様に任意の海域の海底地形を [SeaDAS Mapped]のhdf データとして出力 する。ここでは、北緯34度から37度、統計138度から142度までを、240カラム×180 ラ インの SeaDAS Mapped データとして、〈BATHY_240x180KC_mapped.hdf〉のファイルに出力し た。
- (2) MultiSpec による GeoTiff への変換
 - MultiSpecを立ち上げ、 [File] > [Open]から(1)の 〈BATHY_240x180KC_mapped.hdf〉を 選択し、デフォルトの条件で表示する。
 - SeaDAS MappedのHDFデータは、座標情報をもつが、SeaDAS以外のソフトウエアと互換性をもたないため、MultiSpecの編集機能を利用し、座標情報を付加する。 [Edit] > [Image Map Parameter]から【Set Map Coordinate Specifications】の座標・投影情報入力のウインドウを開く。

設定値は、図 2-16 に示すように、次の値を入力する。

- ・Units(単位): decimal degree(10進度数)
- •X map coordinate for center of upper left pixel(左上X座標):<u>138</u>(度)
- ・Y map coordinate for center of upper left pixel(左上Y座標):37(度)

Set	Map Coordinate Specifications		23
	Planar Coordinate Information Units: decimal degrees	•	
	X map coordinate for center of upper-left pixel (1,1):	138	
	Y map coordinate for center of upper-left pixel (1,1):	37	
	Horizontal pixel size:	0.0166666	
	Vertical pixel size:	0.0166666	
	Map orientation angle:	0	
	Grid Coordinate System: Geographic (lat-long)	•	
	Geodetic Model Datum: WGS 84 Projection Ellipsoid: WGS 84 Cancel	• • 0K	
ß	32-16 投影座標系の入力		

③ GeoTiff フォーマットへの出力

Set Image File Format Change Specifications	23
Input file: BATHY_240x180KC_MS.tif Lines: 180 Channels: 1 Band format: BSQ Columns: 240 Data value type: 8-bit Unsigned Integer	
Output file: New File Area to Reformat Start End Interval Channels: All	
Column 1 240 1 Invert bottom to top	
Hanson Data Swap Bytes Write channel descriptions Header: GeoTIFF format	•
Data value type: 16-bit Signed Integer Band format: BSQ-Band Sequential Cancel DK	
図 2-17 フォーマット変更設定ウインドウ	

- ・Horizontal pixel size(水平ピク セルサイズ):<u>0.0166666</u>(度)
- ・Vertical pixel size(垂直ピクセ ルサイズ):0.0166666(度)
- ・Map coordinate angle(地図座標傾き):<u>0</u>(度)
- ・Grid Coordinate System(座標系シ ステム):<u>Geographics(lat,long)</u>(地 理緯度)
- ・Geodetic Method Datum(測地系): WGS 84
- ・Projection Ellipsoid(投影楕円
- 体): <u>WGS 84</u>

[Processor]>[Reformat]>
[Change Image File Format]を選択
する。図 2-17 に示すように、【フォ
ーマット変更設定】ウインドウにお
いて、次の項目を設定する。
・Header (ヘッダー):GeoTIFF
その他は、デフォルトでよい。
パラメータの中で注目する点は、
[Data value type (データ値タイプ)]
が16 ビットになっている点である。
水深を表すため、±32768 を表示可能
な 2 バイト整数である。

ファイル名を〈BATHY_240x180KC_MS.tif〉として保存すること。

(3) ArcMAP による MultiSpec データの表示 ArcMAP を立ち上げ、[データ追加]のアイコ ンをクリックし、(2)で用意したファイル 〈BATHY_240x180KC_MS.tif〉を選択し、表示 する。図 2-18 は、水深の図の上に、都道府 県単位の行政界のポリゴンデータ〈GMJ-PrefTUIS¥AllJapanPrefTUIS.shp〉を重ね合 わせ表示したものである。

(4) ArcMAP によるラスターからサーフェイス作成

ArcMAP の [ArcToolbox(ツールボックス)] を開き、 [3D Analyst(3 次元解析)ツール] >[変 換]>[ラスターから変換]>[ラスター→TIN]を選択する。この TIN は、不規則三角形ネットワー ク(Triangle Irregular Network)の意味で、水深あるいは標高の異なる座標の間を、三角形で面 (サーフェイス)を作る機能である。

図 2-19 に示すように、入力ピクセルが与えら れた時、面(サーフェイス)を作るため、ピクセル 間を直線により接続する。各ピクセルに仮想の水 深を付加した。-100mの等深線を結ぶと、左上に ひとつの三角形が作られる。-100mの平らな面で ある。続いて、-150mのポイントを結ぶと、中央 下側の-100mと-200mを結ぶ中間に-150mのポイ ントを置き、等深線を形成する。さらに、水深の 異なるピクセル間を結ぶことにより、斜面が形成 される。このように、対象域を面として表すため

のひとつの手法が不規則三角形ネットワーク(TIN)である。

ラスターは走査線データであり、ピクセル間に隙間はないが、間隔を拡大し、サーフェイス (面)を形成する。

▶ ラスタ → TIN (Raster to TIN)
۸ ۸
BATHY_240x180KC_MS.tif
C#OIwork#BATHY_240x180KC_MS_RasterTin
Z 許容値(オプション)
921.1
最大ポイント数(オプション)
1500000
Z ファクタ (オプション)
100000
-
OK キャンセル 環境 ペヘルプを非表示
[
図 2-20 ノベター→11N 設定リイントリ

図 2-20 に【ラスター→ TIN】の設定ウインドウを示 す。

・入力ラスターは、ArcMAP上 に表示した

・出力 TIN は自動的に決定される。ひとつのレイヤーとして表示されるとともに、ひとつのフォルダとして出力される。デフォルト値とする。

・Z 許容値は、水深差を 1/10

した値が表示される。デフォルト値とする。

・最大ポイント数は、デフォルトで1,500,00 個と表示されるが、ラスターが大きい場合はこの 数を増やす。

・2ファクタは、2軸方向の距離を水平方向の距離と合わせるための係数である。たとえば、水 深 9211m までのデータに 100000 の 2 ファクタをかけることによって、921100000m の 2 軸方向の 空間が作られる。実際には、2 ファクタを大きくすることにより、等深面の数を増やす結果となり、多くの三角形により滑らかなサーフェイス(面)を作ることができる。

図 2-21 TIN により作成された水深図

図 2-21 に、TIN により作成されたサーフ エイス面の図を示す。

Zファクタの設定によりサーフェイスの滑 らかさが変化する。

(5) ArcScene による 3 次元表示

ArcScene を立ち上げ、[データ追加]アイコンをクリックし、

〈BATHY_240X180KC_MS_RasterTin〉と都道府県単位の行政界のポリゴンデータである〈GMJ-PrefTUIS¥AllJapanPrefTUIS.shp〉を追加する。この結果、図 2-22 に示すように、水深方向に長 く伸びた立体画像が表示される。これは、前段において設定した Z ファクタにより拡大された水

深によるものである。

ここでは、TIN による 3 次元構造を作成する段階において、Z ファクタを 100000 としている ため、921100000m の空間を再現しようとしている。3 次元表示における水深方向の表現は、見 かけ上、水深が適切に表現されればよい。図 2-23 の[Z 単位変換]を[カスタム]とし、

[0.000000001]とする。この結果、図 2-24に示すように、関東を中心とす る周辺海域の水深図が示される。

ここでは、行政界データの塗りつ ぶし色をなしとした。また、行政界 の【レイヤープロパティ】から【ベ ース(標高)】のタブにおいて、[レイ ヤーの標高設定に定数または式を使 用]の値を「0」とした。

2-2-2 USGS の 2 分刻みの標高・水深データを利用(課題)

(1) データセットの用意

ここでは、USGS(米国地質調査所)から公開されている2分刻み(約3km)の標高・水深データ を利用し、陸上の標高と海底地形を表示する。海底地形部分に関しては、SeaDASから抽出する 海底地形と同等の解像度をもつ。サンプルファイルとして、関東地方を中心に、北緯34度から 37度、東経138度から142度の領域を抽出した Imagine IMG フォーマットのラスターデータ

〈ETOPO2USGS2_KC.img〉のファイル及び行政界データ(AllJapanPrefTUIS.shp)を用意した。 教材フォルダ(Y:)から、BathyDataをフォルダごと、D: ¥TEMP ヘコピーする。

(2) ArcMAP によるラスターからサーフェイス作成

ArcMAP を立ち上げ、[データの追加]から、D:¥TEMP¥BathyDataの〈ETOP02USGS2_KC.img〉のフ ァイルを選択する。図 2-25 は、都道府県単位の行政界のポリゴンデータ

図 2-25 USGS2 分刻みデータの表示例

〈GMJTUIS¥AllJapanPrefTUIS.shp〉を追加 した表示例である。

前節と同様に、ArcMAP の [ArcToolbox(ツ ールボックス)]を開き、 [3D Analyst(3 次 元解析)ツール] >[変換]>[ラスターから 変換]>[ラスター→TIN]を選択する。図 2-26 に示すように、 【ラスター→TIN】のウイ ンドウにおいて、 [入力ラスター]を表示さ れているレイヤーから選択すると、 [出力 TIN]のファイル名、 [Z 許容値]の、 [最大ポ

イント数]が自動的に与えられる。これらの内、Z許容値の1234.1は、最大標高の3100mと最大 水深の9200mを加えて、1/10した値である。[Zファクタ]は、10000とする。Zファクタ値が小 さいと、微小な標高変化が表示されない。

この結果、図 2-27 に示すように、TIN により構成される新しいレイヤーが表示され、 《RasterTIN》のフォルダが作成される。

≪ ラスター → TIN (Raster to TIN)	
入力ラスター	~
ETOPO2USGS2_KC.img	- 🖻
出力 TIN	
D:¥TEMP¥RasterTIN	
Z 許容値 (オプション)	
	1231.8
最大ポイント数 (オプション)	
	1500000
Z ファクター (オブション)	
	10000
	~
OK キャンセル 環境	ヘルプを表示 >>

(5) ArcScene による 3 次元表示

ArcGIS のグループから ArcScene を立ち上げ、[データ追加]アイコンをクリックし、 D:¥TEMP の〈RasterTIN〉と都道府県単位の行政界のポリゴンデータである 〈AllJapanPrefTUIS.shp〉を追加する。 この結果を確認するため、全体表示をクリックすると、次のようにエラ ーメッセージが表示される。これは、Z方向の解像度を上げるために 10,000 倍したことによるものである。

地球儀=全体表示

- ArrScene			— П X
Man Arcocelie			
ファイル(F) 編集(E) 表示(V) ブックマーク(B)	選択(S) ジオプロセシング(G) カスタマイズ(C) ウィン	ドウ(W) ヘルプ(H)	
। 🗋 🖆 🕼 🐇 👘 🛍 🗶 🔛 🏹 🗌	> 🖂 🔚 🇊 🗟 🚳 🖸 🐎 🖕 🍕	a 🐵 🔍 🔍 🖑 🔇 k 🖓 - 🖄 k k 🕚	🖻 🖪 🛗 💿 🗇 🖕
RasterTIN 💌 🖉 🚲 💷			
			4
			000
E Albaparirieriois	Z-単位	×	4
RasterTIN			272
エッジ タイプ	ジオグラフィの遠切な表示に対して、鉛直方向の範囲が	「大きすぎます。	
	可能な限り調整するために、シーン内のレイヤーの座標	系または縦方向の強調設定をチ	
標高	1770 (1220)		
14443333.333 - 28130000			
-12930000 - 756565 667		OK	
-26616666.66712930000			
-40303333.33326616666			
-5399000040303333.333			
-67676666.6675399000C			
-81363333.33367676666			
-9505000081363333.333			
< >			

① Zファクタ

【レイヤープロパティ】から【ベース(標高)】タブを選択し、[Z単位変換]の値を 「0.00000001」とする。この大きさは、適宜選択し、見やすい3次元表示とする。

レイヤー ブロパティ	×
一般 ソース 表示 シンボル フィールド 基準高度 レンダリング	
サーフェスの高度 ○サーフェスの高度値を使用しない ●指定したサーフェス上に配置する D¥TEMP¥RasterTIN ✓ ラスターの解像度_ -7<-1×の高度	
 ○ フィーチャの高度値を使用しない ○ フィーチャの高度値を使用する 高度値をシーンの座標単位に換算: カスタム 0.00000001 	
 ○定数または式を使用: 0 ○ 図 	
レイヤーのオフセット 一定の高度オフセットを加算(シーンの座標単位)(0): 0	
基準高度の設定にNT 0.00000001とする。	
OK キャンセル 適用(A)	

水深と標高別のカラー表示

【レイヤープロパティ】から【シンボル】タブを選択し、[表示]のオプションにおいて、[追加]のアイコンをクリックし、図 2-28 に表示される【レンダリングの追加】から[フェイスを標高でグラデーション描画]を選択し、[追加]

同じく、【シンボル】のタブにおいて、[カラーランプ]を「黄緑から青」を選択する。分類に おいて、クラス数を22とし、「分類」をクリックする。

カラーバーを次のように反転する。右クリックし、プロパティから、

分類手法を「手動」とし、閾値を次のように変更する。

I	閾値(K)	%
	-80000000	~
	-50000000	
	-30000000	
	-10000000	
	-5000000	
	-2000000	
	-1000000	
	-500000	
	-100000	
	-10000	
	0	
	10000	Υ.
	OK	

レイヤー プロパティ	×
一般 ソース 表示 シンボル フィールド 基準高度 レンダリング	
 サーフェスの高度 ●サーフェスの高度値を使用しない ●指定したサーフェス上に配置する D*TEMP¥RasterTIN マスターの解像度… フィーチャの高度 ●フィーチャの高度値を使用しない ○フィーチャの高度値を使用する 高度値をシーンの座標単位に換算: カスタム 0.00000001 	
 ○ 定数または式を使用: 0 ○ () ○ ()	_
▲定の両度オブビットを加具(ソーブの)坐標単1(1)(0): ▲進高度の設定(こついて)	
OK キャンセル	適用(A)

基準高度のフィーチャの高度を 0.00000001 とする。

この例では、水深-8000mに対して、(4)のサーフェイス TIN 作成の際 に設定した「Z ファクタ」である 10000 をかけた-80000000 とする。

行政界の表示面

都道府県単位の行政界のポリゴンは、デフォルトの状態では、標高 0m 高さに表示され、一部 が山の下になり、隠れてしまう。このため、図 2-31 に示すように、行政界の【レイヤープロパ ティ】の【基準高度】タブから、[サーフェイスの高度]を[指定したサーフェイス上に配置する] を選択する。また、[Z 単位変換]のスケールを[0.00000001]として、前段の標高と合わせる。

ヤー プロノ	(ิิวา								
	立ち上	げ			レンダリング		HTM	IL ポップアップ	
一般	ソース	選択	表示	シンボル	フィールド	フィルター設	定 属性の結合とリレー	ト 基準高度	時間
サーフェ ・サーフェ ・ 都 ・ アイーチ・ ・ で アイ ・ で お ・ で 、 で 、 で 、 で 、 、 、 、 、 、 、 、 、 、 、 、 、	スの高度 -フェスの高度(定したサーフェン)¥TEMP¥Ras ラスターの解 やの高度 ーチャの高度(ーチャの高度(い) 調査値をシーンの 缺または式を使	直を使用しない R_上に配置する terTIN 学像度… 直を使用しない 直を使用する の座標単位に 見用:) ;) 烘算:			አንያይ	✓ 0.00000001○ □□		
- レイヤ- - 一定の 基準高度	のオフセット)高度オフセット まの設定につい	を加算 (シー: <u>て</u>	ンの座標単位) (0):	0				
							OK	キャンセル	適用(A)

この結果、図 2-32 に示すように、関東地方を中心とした近県の標高と、近海の水深分布の 3 次元表示画像が得られる。

任意の位置に回転し、fn キーと prt sc キーを同時に押し、パワーポイントへ貼り付け、提出する。

2-2-3 USGS の 30 秒刻みの標高データを利用

ここでは、USGS(米国地質調査所)から公開されている 30 秒刻み(約 1km)の標高のみのデータ を利用し、標高データを 3 次元表示する。方法は、2-2-2 と同じである。

(1) データセット

関東地方を中心に、北緯 34 度から 37 度、東経 138 度から 142 度の領域を抽出した Iamage IMG フォーマットのラスターデータ (GTOPO30USGS2_KC.img) のファイルを用意した。

(2) ArcMAP によるラスターからサーフェイス作成

2·2·2 と同様に、ArcMAP の [ArcToolBox(ツールボックス)] の[3D-Analyst(3 次元解析)ツー ル]から、[ラスター→TIN]の機能を利用し、3 次元表示のための不規則三角形ネットワーク (TIN)によるサーフェイス(面)データを作成する。[Z ファクタ]を 10000 とする。

この結果、《GTOPO30USGS2_KC_RasterTin》のフォルダとサーフェイスデータが作成される。

(3) ArcScene による 3 次元表示

図 2-33 に 3 次元表示の例を示す。凡例は最大標高の値が 36000000 となっているのは、3600m を Z ファクタにより 10000 倍しているためである。この図の Z 単位変換は、0.00000001 とし た。任意の配色と、任意の角度から表示してみよう。

2-2-4 国土数值情報

ここでは、国土地理院が作成し、市販されている「数値地図 50m メッシュ(標高)」を例にあ げ、ArcMAP による処理と、ArcScene による 3 次元表示方法について説明する。

数値地図 50m メッシュは、1/25,000 の地形図から求めた数値標高モデル(Digital Elevation Model)である。1/25,000 の地形図を緯度、経度方向に 200 等分し、各座標点の標高を与える。 各座標点の間隔は 50m である。

(1) ArcMAP による読み込み

[表示]>[ツールバー]>[国内データ変換ツール]の選択により、 ArcMAP のツールの一つとして、[国内データ変換ツール]が利用可能 となる。[国内データ変換ツール]から[数値地図データ変換ツール] を選択し、[数値地図 50m メッシュ(標高)]を選択する。【数値地図 フォルダの設定】のウインドウが開くので、3次元表示の対象とな るメッシュファイルを指定する。メッシュファイルは、図 2·34 に 示すように、1/25,000 の地形図単位にファイルとなっている。

	A	В				
1	メッシュコード	図名				
2314	534020	五井				
2315	534021	蘇我				
2316	534022	東金				
2317	534023	上総片貝				
2318	534024	木戸				
2319	534030	千葉西部				
2320	534031	千葉東部				
2321	534032	八街				
2322	534033	成東				
2323	534034	木戸				
2324	534040	習志野				
2325	534041	佐倉				
図 2-34 数值地図 50m						
メッシュ(標高)データの						
メッシュコードと図名						

一つのファイルは、約40000個の座標点から構成される。複数のファイルをまとめて処理可 能であるが、場合によっては、コンピュータに極端な負荷をかけることがあるので、メッシュコ ードにより示される領域単位で処理し、目的に応じた使い方を選択する。

ここでは、東京情報大学の含まれる千葉東部(534031)の処理を例にあげる。図 2-35 に示すように、

フォルダの指定: メッシュコードの上位4桁がフォルダ名に相当する。ここでは、

《5340》のフォルダを指定する。

ファイルの指
 定:【数値地図
 50mメッシュ(標
 高)】のウインドウに
 おいて、千葉東部
 (534031)を選択し、
 [追加]キーをクリッ
 クすると、右側のウ
 インドウに千葉東部
 のファイルが移動す
 る。出力フォルダを

	変換対象データ	選択数: 1
 >> 追加 >> <!--</td--><td>□-5340 千葉 □-534031 千葉</td><td>建東台科</td>	□-5340 千葉 □-534031 千葉	建東台科
海部 (で出力し)	ない こ ので出力	○ -9999で出力
参照	変換	閉じる
	 >> 追加>>> < >> 全て追加>>> <	 >> 追加>>> (《削除 (>>> 全で追加>> (《全で削除 (市区町村検索 地図による指定 海部 (※出力しない) (※出力しない) (※出力しない) 参照 変換 変換

《C:¥OIwork》とする。

[変換]キーをクリックする。 (mesh50.shp) としてシェープファイルが作成される。

(2) ArcMAP によるメッシュデータの表示

[データの追加]アイコンをクリックし、《c:¥OIwork》の〈mesh50.shp〉を選択すると、図 2-36 に示すように、千葉東部のメッシュデータが表示される。東京情報大学付近を拡大表示す ると、図 2-37 に示すように、50m 間隔のメッシュ(ポイント)データから構成されることが分か る。

2-2-1 から 2-2-3 まで扱ったラスターデータと異なり、50m 間隔のポイントデータであること が分かる。

メッシュデータから3次元表示のためのサーフェイスを作成する方法がいくつか提供されている。

・ メッシュデータ→ラスターデータ→サーフェイスデータ

メッシュデータ→サーフェイスデータ

と変換する方法であり、特に、メッシュデータからサーフェイスデータを構築する方法では、メ ッシュ(ポイント)間の補間方法が複数方法用意されている。

(3) メッシュデータ(ポイントデータ)からラスターデータの作成

ここでは、メッシュデータから直接サーフェイスデータを作成する。この方法は、均質に分布 しないポイントデータにも適用可能である。

[ArcTool]>[Spatial Analyst(空間解析)ツール]>[内挿]>[IDW]を選択する。IDW(Inverse Distance Weighted Technique)は、距離の逆数で重み付けし、ポイントとポイントの間を補間 し、内挿する方法である。

図 2-37 に示すように、【IDW】の設定ウインドウにおいて、[入力ポイントフィーチャ]に、 (mesh50) のレイヤーを選択する。[Z 値フィールド]には標高データのレコードである「ELEV」

が、 [出力ラスタ] には 《Idw_mesh50》のフォルダが、 [出力セルサイズ] には約 30m に 相当する「0.000333」度が、[乗 数]には距離の乗数により自由度を 設定するための定数が、[検索半 径]には補間対象のポイントの個数 が、それぞれ設定される。

この結果、図 2-38 に示すよう に、IDW(距離逆関数重みづけ)によ り内挿されたレイヤーが表示され る。同時に、《Idw_mesh50》のフ オルダが作成され、3 次元表示のた めのデータが収納される。

🎤 IDW		
	入力ポイントフィーチャ	*
	mesh50	
	ELEV V	
	, 二 出力ラスタ	
	C:¥OIwork¥Idw_mesh50	
	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
1	0.000333	
	乗数 〈オブション〉	
	2	
	検索半径(オブション)	
	(資本干) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	
	现人生的性:	
	入力バリア ポリライン フィーチャ (オプション)	
		Ŧ
	OK キャンセル 環境 ベヘルブを非表示	:
図 2-:	37 IDW 設定ウインドウ	
I I		

(4) AcrScene による 3 次元表示

[データの追加]から《Idw_mesh50》を選択する。【レイヤープロパティ】の【ベース(標高)】において、

- ① [レイヤーの標高をサーフェイスから取得]を選択し、
- ② [Z変換単位]を「0.0001」とする。

【レイヤープロパティ】の【シンボル】において、図 2-39 に示すように、

- ③ [表示]を[分類]とし、
- ④ [分類]から[分類(Y)]を選択し、分類値を 5m 単位に設定する。

レイヤプロパティ			
一般 ソース 範囲 表示 ジンボル フィールド テーブル結合とリレート ベース(標高) レンダリング			
表示(S): う ユトレッチ 	クラスにグループ化されたラスタ値を描画しま	t.	インポート(M)
	- フィールド 値(V): 〈セル値〉 正現化(Z): 〈なし〉 カラーランプ: シンボ… 筆面 0 - 5 5 - 10 10 - 15 15 - 20 20 - 26 25 - 30	分類 自然分類(Jenks) クラス(C): 11 ▼ 分 ラベル 0 - 5 500000001 - 10 100000001 - 10 100000001 - 15 200000001 - 25 2500000001 - 30	
	 □ セル値でクラスの閾値を表示(H) □ 陰影起伏効果を使用 Z: 1 	NoData 色(N) _	<u> </u>
図 2-39 レイヤープロパティのシンボルの設定例			

[データの追加]から、千葉県行政界のポリゴンデータ (GMJ-

TUIS¥ChibaTUIS¥ChibaPolygon.shp〉と千葉県の鉄道のラインデータ〈GMJ-

TUIS¥ChibaTUIS¥ChibaRailRoad.shp〉を追加する。それぞれ、【レイヤープロパティ】の【ベース(標高)】において、

- ⑤ [レイヤーの標高をサーフェイスから取得]とし、
- ⑥ [Z 単位変換]を 0.0001 とする。起伏を大きくするときは、[Z 単位変換]を変更する。

この結果、図 2-40 のように、数値地図 50m メッシュ(標高)の3次元表示が可能となる。行政 界のポリゴンと鉄道のラインは、3次元の標高データの面に配置される。

