環境リモートセンシング論(旧カリ:環境情報システム論) AVNIR-NDVI

1. 今週の目標

MultiSpec を利用し、

- ① AVNIR の輝度値画像を読み取り、
- ② 植生指数を計算し、
- ③ 主題図として出力すること。

この作業を通し、植生指数の概念と計算方法を理解すること。

2. 植生指数

植生指数は、植物の現存量を表すために考案され、赤色波長と近赤外波長のコントラスト計算により、指数として表現する方法である。正規化植生指数(Normalized Vegetation Index (NDVI))と称される。

近赤外分光輝度値 — 赤分光輝度値 NDVI = 近赤外分光輝度値 + 赤分光輝度値

植物の分光反射特性として、

USGS のアースショットから引用

3. 準備

AVNIRKantoのフォルダに以下のファイルがあることを確認する。

AVNIR 20090829.tif

これは、AVNIR-2により2009年8月29日に観測された首都圏の画像である。バンド1から4までを含む。

4. MultiSpec によるバンド合成と NDVI 計算

(1) 全体表示

「File」→「Open Image」を選択し、フォル ダ「AVNIRKanto」のファイル「AVNIR20090829.tif」 を選択する。

続いて、右のように、RGB を 321 とする。画像 中の統計量を計算するため「Load New Histogram」 のチェックボックス☑ボックスをチェックする。

統計量の計算設定のウインドウは、デフォルトの まま、OK とする。

この結果、右図のように、霞ヶ浦南部から、九十 九里浜、袖ケ浦、横浜本牧、都心部、埼玉南部を含 む領域のトルーカラー画像が表示される。

Line	Start	End	
Column	1	7057	
		1.001	
ype: 3-Channel C	olor	•	Bits of color: 24
Channels:			Stretch:
Red: 3	Γ	Invert	Min-max: Clip 2% of Tails
reen: 2		Invert	Treat '0' as: Data
Blue: 1		Invert	Number of display levels: 256
Channe	el Descriptio	ons	
agnification: 5			

- (2) トルーカラー画像表示
 情報大周辺の植生分布を見るために、
 「Processor」→「Display Image」を選択する。画像表示の設定ウインドウにおいて、右図のように設定する。
 - Area to Display(表示領域)
 Line: 2986-3093
 Column: 4813-5053
 - ② RGB: 321
 - ③ Stretch(強調): Gaussian(ガウシアン分布)

画像中の統計量を計算するため「Load New

Histogram」のチェックボックス☑ボックスをチェックする。

Set Display Specifications for:	
AVNIR20090829.tif Area to Display	Interval
Line 2986 3093	1
Column 4813 5053	1
Display	Enhancement
Type: 3-Channel Color	Bits of color: 24
Channels:	Stretch: Gaussian
Red: 3	Min-max: Clip 2% of Tails
Green: 2 🗆 Invert	Treat '0' as: Data
Blue: 1 Invert	Number of display levels: 256
Channel Descriptions Magnification: 0.11111111	I Load New Histogram
	Cancel OK

④ 統計量計算設定ウインドウにおいて、	Set Histogram Specifications
Area to Histogram(統計量計算領域)を前項と同様に 設定する。 Lina: 2986-3093	Image file: AVNIR20090829.tif Default Statistics File: AVNIR20090829.sta Method: Compute new histogram
Column : 4813-5053	Start End Interval Line 2986 3093 1 Column 4813 5053 1
この結果、全体のスケールと同じスケールにより、指	
定領域が表示されるので、ズームキー L により拡大すると、千城台駅のラパークから情報大付近が表示される。	Channels: All
	Cancel OK

- 拡大表示した画像をワードへ貼り付ける。貼り付けは、MultiSpec の「Edit」→「Copy Image Selection」により、画像をコピーバッファヘコピーする。ワードにおいて、所定の場所へ貼り付 ける。
- (3) フォールスカラー画像表示

次に、植生分布を強調するため、近赤外の波長 を赤と表示するフォールスカラー画像表示を行う。

- $\lceil Processor \rfloor \rightarrow \lceil \rfloor$
- Area to Display(表示領域)
 Line: 2986-3093
 Column: 4813-5053
- 2 RGB: 432
- ③ Stretch(強調): Gaussian(ガウシアン分布)

画像中の統計量を計算するため「Load New Histogram」のチェックボックス☑ボックスを チェックする。

Line [Column [Start 2986 4813	End 3093 5053	Interval 1 1 1			
Display Type: 3-Channel C	olor	•	Enhan Bits o	f color: 24	•	
Channels: Red: 4		Invert	Min-m	ax: Clip 2	sian % of Tails	•
Green: 3 Blue: 2		Invert Invert	Numb	u as: ∣Data ⊨erofdisplayle∘	vels: 256	•
Channe	l Descriptio	ns	I Lo	oad New Histog	gram	

◎ 拡大表示した画像をワードへ貼り付ける。貼り付けは、MultiSpec の「Edit」→「Copy Image Selection」により、画像をコピーバッファヘコピーする。ワードにおいて、所定の場所へ貼り付 ける。

*ヒント:変な色の画像が表示された場合は、i) 統計量を再計算させる。ii) 統計量の計算領域を 再確認する。

- (4) NDVI 計算
 - (1)の⑨と同様に「Processor」→
 「Reformat」→「Change Image File Format」を起動する。
 - ② Transform Data(データ変換)の ズックスをチェックする。
 - ③ 「 Set Reformat Transform Parameters」において、「New Channel from General Algebraic Transformation(一般数学変換)」をチ ェックする。

$$C4 - C3$$

$$NDVI=0+ - - - + C3$$

$$C4 + C3$$

- ④ 右のように、計算式を入力する。ここ
 で、C3 と C4 は、それぞれ赤と近赤
 外のバンドを意味する。
- ⑤ NDVI の計算式によると、最低値が
 -1.0、最大値が 1.0 になる。これを、
 データとして保存するために、出力デ
 ータの深さが「32-Real」として提案
 される。「Data value type」を「32-bit
 Real」とする。また、出力 Options
 の「Header」は「GeoTiFF format」
 とする。

Set Image File Format Change Specifications	X
Input file: AVNIR20090829.tif	
Lines: 4688 Channels: Columns: 7857 Data value type: Output file: New File	4 Band format: BSQ 8-bit Unsigned Integer
Area to Reformat Start End Interval Line 2986 3093 1 Column 4813 5053 1	Options Invert bottom to top Invert right to left
✓ Transform Data	🗖 Swap Bytes
Recommended minimum data bits: 32-Real	Write channel descriptions
Data value type: 32-bit Real	Header: GeoTIFF format
Band format: BSQ-Band Sequential	Cancel OK
Set Reformat Transform Parameters	X
C Adjust Selected Channels	
 New Channel from General Algebraic Transforma 	tion
= 0 + C4-C3	× 1
C No Transformation to be Done	Cancel OK

⑥ OK をクリックし、「名前を付けて保存」のウインドウにおいて、下の図のように、ファイル名を 「AVNIR20090829NDVI.tif」とする。

名前を付けて保存	F				23
保存する場所(I):	🎉 AVNIRKanto		-	← 🗈 📸 ▼	
Ca	名前	*		更新日時	種類
最近表示した場所	(AVNIR20090	520B1234NaritaInba		2012/04/15 21:54	TIFF イメージ
	AVNIR20090	829.sta		2012/07/01 11:11	STA ファイル
デスクトップ	(E AVNIR20090)	829		2011/06/27 17:42	TIFF イメージ
うイブラリ					
コンピューター					
ネットワーク	•	m			Þ
	ファイル-名(N): AVNIR20090829NDVI.tif ・				保存(S)
	ファイルの種類(T):	All Files (*.*)		-	キャンセル

(5) NDVI 画像表示

(4)において作成した正規化植生指数の画
 像「AVNIR20090829NDVI.tif」を MultiSpec
 へ表示する。「File」→「Open Image」から、
 右の図のように表示設定を行う。

- Display Type を「1-Channel Thematic」 とする。
- ② Strech(強調)は「Linear」とする。
- ④ Min-max(最小と最大)は「Entire Range (全範囲)」とする。
- ⑤ Number of display levels(表示クラス数) は「15」とする。
- ⑥ Load New Histogram(統計量計算)のズックスを ON とする。
- ⑦ 表示後、Palette(カラーパレット)を MODIS NDVI とする。

Set Display Specifications for: AVNIR20090829NDVI.tif Area to Display Line 1 End Inte Column 1 241 1	rval
Display Type: 1-Channel Thematic Channels: 1 Invert Legend Factor 1 Channel Descriptions	Enhancement Bits of color: 8 Stretch: Linear Min-max: Entire Range Treat '0' as: Data Number of display levels: 15 Load New Histogram
Magnification: 3	Cancel OK

- 拡大表示した画像をワードへ貼り付ける。貼り付けは、MultiSpec の「Edit」→「Select All Image」
 →「Copy Image Selection」により、画像をコピーバッファへコピーする。ワードにおいて、所定の場所へ貼り付ける。Thematic(主題図)であるので、カラーコード表も一緒にコピーされる。
- ⑧ 正規化植生指数は、画像の一部の領域を選択し、「Processor」→「List data」を選択し、
 OKとすると、右の図のように、選択された 領域の数値が表示される。

Text Output

List Data 07-01-2012 17:07:24 (MultiSpecWin32_6.25.2012)					
Input Parameters:					
Image file = 'AVNIR20090829NDVLtif'					
Channels used: 1					
Output Information:					
Multispectral Image Data Values					
Channe Is 1 0. 4171 0. 4082 0. 4257 0. 3918 0. 4124 0. 4051					
0 CPU seconds for listing data. 07-01-2012 17:07:24					
€					

課題 AVNIR による情報大周辺の衛星画像と正規化植生指数 文字の折り返し:四角 横幅:137mm 図1 AVNIR 画像 2009.8.29 観測 RGB:321 図2 AVIR 画像 2009.8.29 観測 RGB:432 Classes 文字の折り返し:四角 < -0.30 橫幅:170mm -0.30 - -0.23 -0.23 - -0.16 -0.16 - -0.10 -0.10 - -0.03 -0.03 - 0.04 0.04 - 0.11 0.11 - 0.17 0.17 - 0.24 0.24 - 0.31 0.31 - 0.37 0.37 - 0.44 0.44 - 0.51 0.51 - 0.57 > 0.57

図3 正規化植生画像(AVNIR009.8.29)

図1のトルーカラー画像によると、情報大学のサッカーコートや1号館などの建物は可視光帯域において反 射率が高く 色に観察される。学生会館裏には植生が多い演習林が 色に観察される。大学から千城 台まで住宅地が広がる。また、大学の東側には水田が広がり、さらに東側にゴルフ場が観察される。図2のフ ォールスカラー画像によると、大学東側の雑木林(色)と水田(色)との植生の違いがはっきり示 される。図3の正規化植生分布図によると、情報大の野球グラウンドとサッカーコートは、 がなく、 植生指数としては 程度である。情報大東側の雑木林の植生指数は 程度であり、水田の植生指数 は 程度である。ラパークの人工構造物の植生指数は 程度である。